Eye Movement Deficits Are Consistent with a Staging Model of pTDP-43 Pathology in Amyotrophic Lateral Sclerosis
نویسندگان
چکیده
BACKGROUND The neuropathological process underlying amyotrophic lateral sclerosis (ALS) can be traced as a four-stage progression scheme of sequential corticofugal axonal spread. The examination of eye movement control gains deep insights into brain network pathology and provides the opportunity to detect both disturbance of the brainstem oculomotor circuitry as well as executive deficits of oculomotor function associated with higher brain networks. OBJECTIVE To study systematically oculomotor characteristics in ALS and its underlying network pathology in order to determine whether eye movement deterioration can be categorized within a staging system of oculomotor decline that corresponds to the neuropathological model. METHODS Sixty-eight ALS patients and 31 controls underwent video-oculographic, clinical and neuropsychological assessments. RESULTS Oculomotor examinations revealed increased anti- and delayed saccades' errors, gaze-palsy and a cerebellary type of smooth pursuit disturbance. The oculomotor disturbances occurred in a sequential manner: Stage 1, only executive control of eye movements was affected. Stage 2 indicates disturbed executive control plus 'genuine' oculomotor dysfunctions such as gaze-paly. We found high correlations (p<0.001) between the oculomotor stages and both, the clinical presentation as assessed by the ALS Functional Rating Scale (ALSFRS) score, and cognitive scores from the Edinburgh Cognitive and Behavioral ALS Screen (ECAS). CONCLUSIONS Dysfunction of eye movement control in ALS can be characterized by a two-staged sequential pattern comprising executive deficits in Stage 1 and additional impaired infratentorial oculomotor control pathways in Stage 2. This pattern parallels the neuropathological staging of ALS and may serve as a technical marker of the neuropathological spreading.
منابع مشابه
Stages of pTDP-43 pathology in amyotrophic lateral sclerosis.
OBJECTIVE To see whether the distribution patterns of phosphorylated 43kDa TAR DNA-binding protein (pTDP-43) intraneuronal inclusions in amyotrophic lateral sclerosis (ALS) permit recognition of neuropathological stages. METHODS pTDP-43 immunohistochemistry was performed on 70 μm sections from ALS autopsy cases (N = 76) classified by clinical phenotype and genetic background. RESULTS ALS ca...
متن کاملSimulating disease propagation across white matter connectome reveals anatomical substrate for neuropathology staging in amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, characterized by progressive loss of motor function. While the pathogenesis of ALS remains largely unknown, recent histological examinations of Brettschneider and colleagues have proposed four time-sequential stages of neuropathology in ALS based on levels of phosphorylated 43kDa TAR DNA-binding protein (pTDP-43) aggregat...
متن کاملSpread of pathology in amyotrophic lateral sclerosis: assessment of phosphorylated TDP-43 along axonal pathways
INTRODUCTION The progression of amyotrophic lateral sclerosis (ALS) through the brain has recently been staged using independent neuropathological and neuroimaging modalities. The two schemes tie into the concept of pathological spread through corticofugal axonal transmission that stems from observation of oligodendrocyte pTDP-43 aggregates along with neuronal inclusions. Here, we aimed to asse...
متن کاملFunctional connectivity changes resemble patterns of pTDP-43 pathology in amyotrophic lateral sclerosis
'Resting-state' fMRI allows investigation of alterations in functional brain organization that are associated with an underlying pathological process. We determine whether abnormal connectivity in amyotrophic lateral sclerosis (ALS) in a priori-defined intrinsic functional connectivity networks, according to a neuropathological staging scheme and its DTI-based tract correlates, permits recognit...
متن کاملHeterogeneity of cerebral TDP-43 pathology in sporadic amyotrophic lateral sclerosis: Evidence for clinico-pathologic subtypes
Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are types of major TDP-43 (43-kDa TAR DNA-binding protein) proteinopathy. Cortical TDP-43 pathology has been analyzed in detail in cases of FTLD-TDP, but is still unclear in cases of ALS. We attempted to clarify the cortical and subcortical TDP-43 pathology in Japanese cases of sporadic ALS (n = 96) using an antibo...
متن کامل